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ABSTRACT: Every day, thousands of volunteers across the United States report the amount 
of precipitation they have received in the past 24 hours. This study focuses on the largest of 
these volunteer-submitted reports for each day, using precipitation measurements from the 
Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) from January 2010 to 
December 2017 as well as observations from the U.S. Cooperative Observer Program (COOP) 
network from January 1981 through December 2017. Results provide clarity on spatial vari-
ability, temporal variability, and seasonal cycle of contiguous U.S daily precipitation extremes 
(DPEs). During 2010–17, the DPEs ranged from 11 mm on 28 March 2013 in Oregon to 635 mm on 
27 August 2017 in Texas during Hurricane Harvey. Coastal states are most prone to high daily 
precipitation totals, especially those bordering the Gulf of Mexico or Atlantic Gulf Stream. 
The average DPE value varies with season; it is greater than 175 mm in late August and less 
than 100 mm through meteorological winter. These observations also show that location of 
the DPE varies with season as well. For example, 28.5% of February extremes fall in Pacific 
states, whereas all August extremes occur east of that region. Perhaps most importantly, 
these findings demonstrate strength in numbers. The large daily sample size of CoCoRaHS 
and COOP networks forms a basis for monitoring, mapping, and categorizing DPEs, and other 
aspects of extreme precipitation, with considerable spatial detail.
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Extreme precipitation is known to cause flooding, which may lead to disasters costing over 
$1 billion, and human fatalities (Smith 2019). In previous studies, a variety of metrics have 
been used to identify precipitation extremes. The most commonly used metrics include 

the following: 1) fixed thresholds that are thought to represent heavy rainfall accumulations 
(e.g., 25 mm in 1 h; Brooks and Stensrud 2000); 2) percentiles (often the 99th, 99.9th, or 
99.99th percentile of precipitation events at a location; e.g., Groisman et al. 2004); 3) return 
periods of rainfall thresholds, for example, assuming a stable climate, a 24-h rainfall total 
of 200 mm has a 1% chance of occurring in a given year in Kansas City, Missouri (Stevenson 
and Schumacher 2014); and 4) the potential for extreme rainfall based on the atmosphere’s 
theoretical potential for heavy rainfall production, or the probable maximum precipitation 
(PMP; NOAA and USACE 1978). The choice of metric influences which cases are identified as 
extreme, and how the identified cases relate to the severity of associated flooding (Herman 
and Schumacher 2018). What these analysis methods do not provide is an understanding of 
how magnitude and location of contiguous United States (CONUS)-wide precipitation maxima, 
or daily precipitation extremes (DPEs), vary on a daily basis. In this study, we examine day-
to-day variation, location, and seasonality of CONUS-wide DPEs from 1 January 2010 to 
31 December 2017.

Data from two rain gauge networks are used: the Community Collaborative Rain, Hail and 
Snow Network (CoCoRaHS) and the Cooperative Observer Program (COOP). Both CoCoRaHS 
and COOP are networks composed of thousands of volunteer weather observers who report 
their daily measurements via web-based user interfaces (Reges et al. 2016; NWS 2018a). 
CoCoRaHS was founded by the Colorado Climate Center in 1998 and has been operational with 
gauges in every state since December 2009 (Reges et al. 2016). COOP is the National Oceanic 
and Atmospheric Administration’s (NOAA) network of long-term, in situ observations in the 
United States (NWS 2018a,b). While each network’s density of observations varies in time 
and space, CoCoRaHS and COOP together provide improved coverage of 24-h precipitation 
measurements over CONUS (Fig. 1). These two networks combined averaged over 14,000 daily 
precipitation reports with observation times between 0500 and 0900 local time (LT) between 
2010 and 2017. Despite the large number of observations, there is still no guarantee that 
CoCoRaHS and COOP observers catch the true nationwide rainfall maximum on any given 
day. Heavy convective precipitation events in particular can occur on small spatial scales, as 
is exemplified by the 181-mm report from Comal County, Texas, on 6 May 2008 shown in Fig. 2.

Gauge data are not the only viable datasets one might use to compute a climatology of DPEs. 
Gridded datasets including, but not limited to, the NOAA Climate Prediction Center’s Unified 
rain gauge dataset (Xie et al. 2010), Global Precipitation Climatology Center’s GPCC-Daily 
dataset (Schamm et al. 2013), North American Regional Reanalysis (NARR; Rui and Mocko 
2018), and Parameter-Elevation Regressions on Independent Slopes Model (PRISM; Di Luzio 
et al. 2008) could be leveraged. These products rely on gauge data and satellite and radar 
retrieval algorithms (Di Luzio et al. 2008; Rui and Mocko 2018) to create full coverage maps 
of contiguous U.S. precipitation. Satellite and radar retrievals fill data gaps, but are prone to 
substantial limitations in the complex terrain of the western United States, where radar beams 
are blocked in many locations (Westrick et al. 1999) and satellite instruments have insufficient 
resolution. While gridded data are spatially and temporally complete, the magnitude of maxi-
mum daily precipitation in a gridded dataset depends on the dataset’s resolution. Daily point 
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observations of extreme precipitation 
are typically higher in magnitude than 
the corresponding gridbox estimates 
(Gervais et al. 2014; Timmermans et 
al. 2019). The lower a gridded dataset’s 
resolution, the more the magnitude of 
extremes is lost (Sun et al. 2018). The 
analysis presented here is therefore 
primarily based on point observations, 
but for comparison, a similar analysis 
with PRISM data is also included.

Methods
Data. The highest 24-h precipitation 
totals with observation times between 
0500 and 0900 LT were collected across 
CONUS from two networks. The first is 
the CoCoRaHS network from 1 January 
2010 through 31 December 2017. This time 
period was chosen because CoCoRaHS is 
active in all 50 states as of December 
2009 (Reges et al. 2016). The second is 
the COOP network from 1 January 1981 
to 31 December 2017. This time period 
was chosen to examine the most recent 
“climate normals” period (NCEI 2019) 
and to overlap with CoCoRaHS data. This 
report’s focus is on the time frame during 
which both networks were active.

Quality control. CoCoRaHS reports are 
submitted daily by trained volunteers 
around the country. CoCoRaHS staff 
and coordinators throughout the country identify and correct errors daily. For the analysis 
presented here, the data were subjected to additional manual scrutiny (Hilberg 2018); further 
errors were removed. Identified errors include multiday reports recorded as 24-h totals, date-
shifted observations, snowfall reported as liquid precipitation, and observations that cover 
more than 24 h (i.e., 0500 LT 1 January to 0900 LT 2 January).

COOP data, also collected mostly by volunteer weather observers, were taken from the 
Global Historical Climatology Network–Daily dataset (GHCNd; Menne et al. 2012), retaining 
only those values that passed GHCNd’s suite of automated quality control procedures (Durre 
et al. 2010). Those procedures range from basic checks for duplication and repetition of values 
to climatological and spatial outlier checks.

The GHCNd dataset incorporates both CoCoRaHS and COOP observations, but the two are 
analyzed separately for two reasons. First, a weather station 
must reach 100 observations before being incorporated into 
the GHCNd dataset. Some valid CoCoRaHS extremes would be 
missed as a result of this requirement. Second, the two networks 
use different rain gauges. CoCoRaHS uses 102-mm-diameter 
plastic rain gauges capable of holding 287 mm of rainfall.1 

a)

b)

Fig. 1. Maps of all (a) CoCoRaHS and (b) COOP rain gauges used 
in this study.

1	 CoCoRaHS and COOP report precipitation in 
English units. Gauge diameters are 4 in. and 8 
in., respectively. All measurements have been 
converted to metric in compliance with AMS 
style guidelines (1 in. = 25.4 mm).
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COOP uses 205-mm-diameter metal gauges capable of holding 610 mm. It is therefore useful 
to retain separate statistics for the two datasets.

Analysis steps. The parameter analyzed here is CONUS maximum daily precipitation for each 
day of the study period for each network of interest. The result is three sets of daily data that 
form the basis of all analysis presented herein: a set of 365 days × 8 years (leap days omitted) 
daily maxima for CoCoRaHS, a set of 365 days × 37 years daily maxima for COOP, and a set of 
365 days × 8 years maxima for CoCoRaHS + COOP. The CoCoRaHS + COOP dataset will be re-
ferred to as the in situ dataset below. For example, if analyzing 1 January 2010, the CoCoRaHS 
DPE is 142 mm, the COOP extreme is 133 mm, and the in situ extreme is 142 mm, the larger 
measurement of the two networks.

We analyze several aspects of the data. First, general statistics of CoCoRaHS and COOP 
DPEs are summarized. Then, DPEs from in situ datasets are compared to DPEs from the PRISM 
4-km grid from 1 January 2010 through 31 December 2017 (Di Luzio et al. 2008). The spatial 
distribution and seasonality of CoCoRaHS and COOP DPEs is mapped and discussed. Finally, 
a closer examination is provided of the highest 5% of all DPEs.

Results
General statistics. Total observational data from CoCoRaHS and COOP were sometimes over 
15,000 reports per day. CoCoRaHS received an average of 10,015 daily reports from 1 January 
2010 to 31 December 2017. The average daily COOP sample size (4,833) was about half the aver-
age CoCoRaHS sample size. Sample size does vary from day to day and by season. For instance, 
there is a seasonal cycle in total CoCoRaHS daily observation count. CoCoRaHS experiences 
nearly a 20% decrease in observation count in winter, disproportionately impacting cold, snowy 
climates. There is no discernable seasonal cycle in the number of COOP observations per day.

The 2010–17 CoCoRaHS average DPE (114 mm) was slightly higher than the correspond-
ing COOP value (112 mm). The average DPE from the entire in situ (using the larger of the 

Fig. 2. Precipitation totals from CoCoRaHS network around San Marcos, Texas, on 6 May 2008. Radar image 
from storm in bottom-right-hand corner.
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two DPEs between networks for each 
day) dataset between 1 January 2010 
and 31 December 2017 was 128 mm. 
The standard deviation was 66 mm. 
Skewness and kurtosis were 1.70 and 
8.97, respectively. Of in situ DPEs, 76% 
have a magnitude of 50–175 mm (Fig. 4), 
18% are above this range, and 6% are 
below. This distribution is a function of 
season, shifting toward higher values 
in summer and lower values in winter 
(Fig. 4). Figure 3 shows every DPE for 
both networks in chronological order.

Eight years is a short time for tracking 
extremes, leaving outstanding ques-
tions about the statistical normalcy of 
recent years. To answer these questions, 
2010–17 COOP data are compared to 
1981–2017 COOP data. For each Julian 
day, a p value was computed to test the 
likelihood that 2010–17 COOP DPEs, and 
1981–2017 COOP DPEs were a part of the 
same larger population of data. A Walker 
test for global significance, which ac-
cepts or rejects the null hypothesis for 
all Julian days based on the minimum of 
these p values (Wilks 2006), fails to reject 
the null hypothesis, that both datasets 
are part of the same larger population, 
at 95% confidence. Given this result, DPE 
magnitudes and seasonality captured 
during 2010–17 are similar to what one 
might expect from a larger sample of 
years in a stable climate.

In situ DPEs ranged from 11 to 635 mm 
in magnitude. Eight were 25 mm or less. 
The minimum DPE of 11 mm fell on 
28 March 2013 in Oregon. As in this 
case, the CONUS precipitation pattern 
on days with low DPEs often fit the fol-
lowing profile: a November–March day 
with light to moderate rainfall recorded 
in the northwestern and/or northeast-
ern CONUS, and dry conditions across 
the southern and central CONUS. Con-
versely, the highest DPEs are often recorded over the southeastern or central CONUS.

There is a seasonal cycle in observed DPEs across CONUS (Figs. 3–5). Late spring through 
early fall see higher maximum precipitation totals than late fall through mid-spring. Maximum 
precipitation totals are higher in late spring through early fall, in agreement with the Clausius–
Clapeyron relation between temperature and available water vapor (Wallace and Hobbs 2006).

Fig. 3. (a) CoCoRaHS DPEs for all days from 1 Jan 2010 to 31 Dec 
2017 (blue) with 30-day running average (black). (b) COOP DPEs 
for all days from 1 Jan 1981 to 31 Dec 2017 (blue) with 30-day 
running average (black).

Fig. 4. Distribution of DPEs from CoCoRaHS + COOP (in situ) 
dataset shaded by season. Blue is winter (DJF), dark green is 
spring (MAM), light green is summer (JJA), and orange is fall 
(SON).
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There is a significant difference 
in the seasonal cycle between 
CoCoRaHS and COOP data (Fig. 5). 
This difference is confirmed at 
95% confidence using Walker’s test 
of minimum p value (Wilks 2006). 
CoCoRaHS DPEs were lower than 
COOP DPEs from mid-November to 
mid-April, but consistently higher 
in summer. Testing significance 
at the 95% confidence level, one 
would expect roughly 18 null hy-
pothesis rejections over 365 days if 
the two time series tested were not 
significantly different. CoCoRaHS 
and COOP time series were sig-
nificantly different on 105 of 365 
days. CoCoRaHS captures higher 
DPEs in summer, likely due to a 
higher sample size in areas prone 
to convective storms. It is less clear 
why DPEs from CoCoRaHS are 
lower than COOP in meteorologi-
cal winter.

Spatial distribution. DPEs were 
most frequent in states bordering 
the Pacific Ocean, Gulf of Mexico, 
or western Atlantic Gulf Stream 
(Fig. 6). Florida, which borders 
both the Gulf of Mexico and Gulf 
Stream, recorded the highest num-
ber of DPEs per observation taken. Louisiana, Mississippi, and Alabama, which also border 
the Gulf of Mexico, ranked second, third, and sixth, respectively. The three Pacific states were 
all top-10 ranking states for number of DPEs per observation as well. Few DPEs occur in the 
Intermountain West states (Fig. 6a).

Seasonal distribution. A large number of DPEs fall in the southeasternern United States in 
every season (Fig. 7). For other regions, the probability of capturing a DPE varies by season. 
The fraction of extremes in the Midwest is highest in summer, the season in which meso-
scale convective systems are most prevalent (Stevenson and Schumacher 2014). DPEs are 
most likely to fall in the eastern CONUS between August and October. Over 50% of DPEs in 
October occur east of the 85°W meridian (from Ohio eastward), a higher proportion than any 
other month. The interior United States cools and dries in fall, but waters of the Atlantic Gulf 
Stream stay warm, so air masses with high precipitable water remain more probable (Minobe 
and Miyashita 2010). Furthermore, both tropical and extratropical systems may produce 
DPEs near the Atlantic Coast during the late summer–early fall time frame. Coastal Pacific 
locations commonly record DPEs from November to March (Fig. 7). Conversely, in summer, 
western CONUS precipitation rates are suppressed by semipermanent high pressure (Higgins 
et al. 1997). Only one DPE was recorded in a Pacific state in meteorological summer months.

Fig. 5. (a) The 15-day moving-average CoCoRaHS DPE (2010–17) (blue), 
15-day moving-average COOP DPE (2010–17) (black), and 15-day 
moving-average COOP DPE (1981–2017) (gray). Statistically significant 
difference in 15-day moving-average CoCoRaHS DPE (2010–17) and 
15-day moving-average COOP DPE (2010–17) (red on blue line; 95% 
confidence level). Statistically significant difference in 15-day moving-
average COOP DPE (2010–17) and 15-day moving-average COOP DPE 
(1981–2017) (red on black line; (95% confidence level). (b) 15-day 
moving-average CoCoRaHS + COOP DPEs (2010–17) (blue) and 15-day 
moving-average PRISM DPEs (2010–17) (purple).
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Comparison to PRISM. CoCoRaHS 
and COOP are not spatially uniform 
networks. Here the CoCoRaHS + COOP 
in situ dataset is compared with a spa-
tially complete gridded dataset: PRISM 
(Di Luzio et al. 2008). Doing so provides 
insight into potential sampling biases in 
DPEs from the in situ dataset.

The mean DPE from PRISM was 
129 mm, only a 1-mm difference from 
the in situ dataset. Additionally, the 
two datasets have similar seasonal 
cycles (Fig. 5b). There were differences 
in where in situ and PRISM DPEs fell. 
PRISM showed more DPEs over Pacific 
states (Fig. 6b). Differences in in situ 
and PRISM DPE spatial distributions 
may be related to the following two fac-
tors: 1) additional observation networks 
incorporated in PRISM are sampling DPE 
events where CoCoRaHS and COOP are 
not; the Snowpack Telemetry (SNOTEL) 
network is one such network (Schafer 
and Paetzold 2000), and 2) PRISM’s in-
terpolation scheme produces extremes 
in the West where observations are not 
present. However, on average this differ-
ence does not translate to higher winter 
extremes for PRISM (Fig. 5b).

The largest daily precipitation 
extremes. The largest daily extremes, 
defined here as the ≥95th percentile in 
situ DPEs, ranged from 250 to 635 mm (Fig. 8b). The largest DPEs were typically near the Gulf 
of Mexico or Atlantic Gulf Stream (Fig. 8a). Only 13% of reports fell in states not bordering 
an ocean or gulf.

Of the DPEs ≥95th percentile, a number of tropical cyclone events were sampled. The highest 
DPE was from Hurricane Harvey in Dayton, Texas, on 27 August 2017 (635 mm). The second- and 
eighth-highest reports were also from Hurricane Harvey. Other tropical cyclones included were 
Hurricane Irene (2011), Tropical Storm Debby (2012), Hurricane Isaac (2012), Tropical Storm Bill 
(2015), Tropical Storm Colin (2016), Tropical Storm Karl (2016), and Hurricane Irma (2017) (NHC 2018).

Not all tropical cyclones needed to make landfall to force DPE ≥95th percentile. Remnant 
tropical cyclone moisture is sometimes sufficient. On 5 October 2015, the seventh-highest 
DPE was recorded in South Carolina (481 mm). It was triggered by a synoptic-scale storm 
drawing remnant moisture from Hurricane Joaquin (Tyler 2015). The ≥95th-percentile DPE 
occurring farthest from all others is the 252-mm report in Boulder, Colorado, on 12 September 
2013 (Fig. 8). This report is over 600 km from any other DPEs ≥ 95th percentile. The event was 
fueled by a corridor of moisture advected northward from the east Pacific and Gulf of Mexico 
(Gochis et al. 2015). Rainfall rates were enhanced by orographic lift over the eastern slopes 
of the Colorado Rockies (Gochis et al. 2015).

Fig. 6. (a) CONUS states ranked by number of DPEs per number of 
observations (1 Jan 2010–31 Dec 2017). (b) Number of CoCoRaHS + 
COOP (in situ) DPEs minus number of PRISM DPEs (2010–17). Blue 
shading indicates more DPEs in the PRISM dataset. Red shading 
indicates more DPEs in the in situ dataset.
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Conclusions
An 8-yr sample of U.S. daily precipitation extremes (DPEs) is presented here using volunteer-
provided rain gauge data. Spatial and seasonal findings from this study support known 
documentation of where heavy precipitation falls in CONUS during the year. Some of the 
important patterns highlighted in this study are as follows: 

1)	 The magnitude of DPEs recorded from CoCoRaHS and COOP over CONUS varies from one 
day to the next, sometimes by several hundred millimeters or more. The observed DPEs 
from 1 January 2010 to 31 December 2017 ranged from 11 to 635 mm.

2)	 Coastal states are much more likely to capture the day’s highest rainfall total than land-locked 
states. States bordering the Gulf of Mexico or Atlantic Gulf Coast capture DPEs most frequently.

3)	 DPE magnitude follows a seasonal cycle. On the average, precipitation extremes are greater 
during the boreal warm season.

4)	 Spatial distribution of DPEs is a function of season. West Coast DPEs occur nearly exclu-
sively from October to May.

5)	 There is strength in numbers. CoCoRaHS and COOP’s combined average daily sample 
size of 14,848 measurements between 0500 and 0900 LT provides a basis for improved 
understanding of DPEs.

Numerous possibilities exist for improving understanding of DPEs. Additional observa-
tions in time and space would add clarity to this investigation. For instance, findings indicate 

Fig. 7. DPEs for (a) winter (DJF), (b) spring (MAM), (c) summer (JJA), and (d) fall (SON). Dot size is scaled by 
precipitation amount. Shape is based on network (circle = CoCoRaHS, square = COOP). Additional color cod-
ing is by month.
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that CoCoRaHS and COOP likely 
undersample West Coast DPEs. 
The wettest locales in western 
states are typically in high-altitude 
zones where finding personnel to 
take daily manual observations 
is difficult. The SNOTEL network 
would be an appropriate addition 
to future studies. High-quality 
state mesonet data could also fur-
ther knowledge of CONUS DPEs 
(Dahlia 2013).

Establishing an operational 
database of DPEs would be of 
service. No two years produce the 
same extremes across CONUS. 
Observational and gridded data 
could be used to track patterns 
over time.

One possible future investiga-
tion would be to relate CONUS 
DPEs to additional weather and 
climate phenomena, such as glob-
al teleconnections (e.g., Madden–
Julian oscillation, Pacific decadal 
oscillation). For example, El Niño–
Southern Oscillation (ENSO) is 
known to explain some of the 
interannual variance in precipita-
tion accumulations (Ropelewski 
and Halpert 1987), temperature, 
and severe weather (Cook and 
Schaefer 2008) over the CONUS. Furthermore, one could use archived atmospheric data to 
relate DPEs more closely to weather systems known to cause heavy precipitation (e.g., super-
cell thunderstorms, mesoscale convective systems).

In the context of a warming climate, which will see changing extremes (e.g., O’Gorman and 
Schneider 2009; Jay et al. 2018), future studies should seek to address DPE trends. Monitoring 
trends in extremes is made difficult by inconsistent quantity and quality of observations, 
so datasets used should be carefully maintained (Kunkel et al. 2013). Due to short period of 
record and variable daily observation totals, CoCoRaHS data are not appropriate for computing 
trends in DPEs. COOP data have been used to track extreme rainfall trends (Kunkel 2003). 
Long-term COOP data, and perhaps a mature gridded dataset, could be employed to monitor 
changes in DPEs over time.
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Fig. 8. (a) Locations of ≥95th-percentile DPEs for 1 Jan 2010–31 Dec 2017. 
(b) Cumulative density function of ≥95th-percentile DPEs.
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